
Crossover behavior from decoupled criticality

Y. Kamiya,1 N. Kawashima,1 and C. D. Batista2

1Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 227-8581, Japan
2Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

�Received 26 July 2010; published 24 August 2010�

We study the thermodynamic phase transition of a spin Hamiltonian comprising two three-dimensional �3D�
magnetic sublattices. Each sublattice contains XY spins coupled by the usual bilinear exchange while spins in
different sublattices only interact via biquadratic exchange. This Hamiltonian is an effective model for XY
magnets on certain frustrated lattices such as body centered tetragonal. By performing a cluster Monte Carlo
simulation, we investigate the crossover from the 3D-XY fixed point �decoupled sublattices� and find a sys-
tematic flow toward a first-order transition without a separatrix or a new fixed point. This strongly suggests that
the correct asymptotic behavior is a first-order transition.
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I. INTRODUCTION

Geometric frustration can play a decisive role in the be-
havior of magnetic systems. The combination of frustrated
geometries with strong quantum fluctuations can lead to new
quantum states of matter.1–3 It has been shown recently that
novel charge effects in Mott insulators, such as spin-driven
electronic charge-density waves, or orbital currents, only
take place in geometrically frustrated lattices.4 Geometric
frustration can also reduce the effective dimensionality of
certain quantum critical points.5 Finally, it has been known
for years that the presence of geometric frustration can
change the nature of certain thermodynamic phase transi-
tions. However, it has been also recognized that the nature of
the new transition can be very elusive for the standard
renormalization-group treatments6 and may require very so-
phisticated numerical approaches.7,8

Several quantum magnets comprise two sublattices of
magnetic ions coupled by a geometrically frustrated
exchange.5 This is for instance the case of a Heisenberg an-
tiferromagnet on a body centered tetragonal �BCT� lattice9 or
a square lattice with nearest- and next-nearest-neighbor ex-
change interactions.10,11 We are interested in the regime of
intersublattice coupling smaller than the intrasublattice ex-
change. We will also assume that there is a uniaxial easy-
plane anisotropy that reduces the Hamiltonian symmetry
from O�3� to O�2�. The frustrated nature of the intersublattice
exchange precludes a bilinear coupling between the order
parameters of the two sublattices. The Hamiltonian symme-
try only allows for an effective biquadratic coupling. Con-
sequently, if mA and mB are the XY magnetizations at wave
vector k0= �� ,� ,0� of the sublattices �which in the BCT
lattice case are the even- and odd-numbered layers9�, the
parallel or antiparallel orientations of mA and mB correspond
to different ground states. The Z2 symmetry is broken by
selecting one of these two states.9,12–14 The O�2��Z2 sym-
metry breaking also appears in the XY model on a triangular
lattice.15 In this case the Z2 broken symmetry corresponds to
the two possible vector chiral orderings.

We want to explore the nature of the thermodynamic
phase transition associated with the O�2��Z2 symmetry
breaking that takes place in several frustrated magnets. For

this purpose, we will consider classical magnetic moments
because the quantum character of the spins does not affect
the nature of the thermodynamic transition. In Ref. 9, we
used two different approaches to understand the effect of the
additional Z2 symmetry breaking and compared their results.
The first approach was a Monte Carlo �MC� simulation of
the classical spin model on the BCT lattice. The second ap-
proach was a scaling analysis of the Landau-Ginzburg-
Wilson �LGW� model that preserves the symmetries of the
lattice Hamiltonian. A single transition with exponents close
to those of the 3D XY model was obtained from a finite-size
scaling �FSS� analysis of the MC data.9 On the other hand,
the scaling analysis of the LGW model

HLGW =� ddx� �
a=A,B

�1

2
���a�2 + t��a�2 + u��a�4�

+ ���A · �B�2 + g��A�2��B�2	 �1�

indicated that � is a relevant perturbation for the 3D XY
decoupled fixed point �DFP� located on the u axis �u�0, �
=g=0�.9 Here, �a= ��a

x ,�a
y� �a=A ,B� is a two-component

field representing antiferromagnetic moments in even- �a
=A� or odd- �a=B� numbered layers, and � is the biquadratic
coupling between them. These results look contradicting at a
first glance: although the numerical observations can be ex-
plained in a consistent way by the DFP, this fixed point is
nevertheless unstable along the � direction. More specifi-
cally, near the DFP, � transforms as ��=by��, where y�

=0.526�8� and b is a rescaling factor.9

The scaling argument implies that there will be a cross-
over behavior from the DFP, provided ���Ly� �1 with L be-
ing the system size.9 However, ��� can be quite small for the
original frustrated spin system because it is an effective in-
teraction that arises from second-order perturbation with re-
spect to the ratio between the interlayer and the intralayer
bilinear exchange couplings.9 In addition, we could not ob-
tain data for sufficiently large L in our previous calculation
in Ref. 9 because we simulated the original Hamiltonian on
the frustrated lattice. Thus, the nature of the crossover was
left as an open problem.
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II. MODEL AND METHOD

A. Model

In this paper, we explore the expected crossover by study-
ing an XY spin model on a cubic lattice that is more directly
related to the LGW effective model than to the original
Hamiltonian on the BCT lattice. The relevant coupling � is
explicitly taken into account by considering the Hamiltonian
model

H = − J �

i,j�,a=A,B

Sa,i · Sa,j + �J�
i

�SA,i · SB,i�2 �2�

with J�0. Sa,i �a=A ,B� is a classical XY spin at site i on the
cubic lattice and 
i , j� is a pair of nearest-neighbor sites. The
coefficient � characterizes the amplitude of the biquadratic
coupling that is expected to drive the system away from the
DFP. We consider the case ��0, which is experimentally
relevant.9 No term corresponding to the g term in HLGW is
explicitly included in H because it is automatically generated
when the short wavelength modes are integrated out �renor-
malization process�.

In the ground state, both A and B spins are ferromagneti-
cally ordered and the O�2� symmetry is broken. In addition,
their relative phase is locked so that SA,i ·SB,i= 	1, which
causes Z2 symmetry breaking. The order parameters associ-
ated with these two kinds of symmetry breaking are m
=mA with mA=L−d�iSa,i and 
=L−d�i
i with 
i=SA,i ·SB,i,
respectively. We introduce the correlation functions Gij

m

= 
SA,i ·SA,j� and Gij

 = 

i
 j�. �For the definition of m and Gij

m,
we can use either A or B spins without loss of generality.�

For very small ��� ��=−0.05, L�64�, we observe an ap-
parently continuous transition with exponents of the DFP,
which is naturally interpreted as the same behavior as in the
previous MC simulation in Ref. 9. However, a more careful
FSS analysis reveals the expected crossover. We present a
numerically obtained renormalization-group flow diagram of
several scaling parameters that should be scale invariant at
the second-order transitions.7,8 We find that the flow evolves
systematically from the DFP without a sign of a stable fixed
point or a separatrix, toward the region where the transition
is discontinuous. Based on this observation and the lack of a
stable fixed point in the � expansion ��=4−d� around the
DFP,16 we propose that the correct asymptotic behavior is a
first-order transition for any �negative� finite value of �.

B. Method

The absence of explicit frustration is the main computa-
tional advantage of H relative to the original model studied
in Ref. 9. This enables us to develop an efficient cluster MC
algorithm based on a minor modification of the embedding
method proposed by Wolff.17 In every update cycle, we
choose a unit vector n at random. The vector n defines the Z2

transformations S̄A=SA−2�SA ·n�n and S̄B=−SB+2�SB ·n�n.
�The difference by a factor of −1 serves to enhance the re-
laxation of the 
 modes as compared to applying the same
mirror-image transformation to the A and B spins.� Then, we
choose a spin Sa,i and identify a cluster C
= �Sa,i ,Sb,j ,Sc,k , . . . that can be reached from Sa,i via proba-

bilistically activated links. The probability to activate a link
depends on the interaction on the link: P1�S ,S��=1

−min�1,exp�J�S̄−S� ·S�� for links with the bilinear

exchange and P2�S ,S��=1−min�1,exp����J��S̄ ·S��2

− �S ·S��2�� for links with the biquadratic coupling. After a
cluster is identified, we flip it, namely, apply the Z2 transfor-
mation on every spin included in C. It can be easily checked
that the algorithm satisfies both the detailed-balance and er-
godicity conditions.

III. RESULTS

A. Conventional scaling analysis

We first present the results for very small ��� with ���Ly�

�1, where we observe an apparently continuous transition
controlled by the DFP. This is naturally expected from the
scaling argument given above and basically the same behav-
ior that was observed in the frustrated model previously stud-
ied in Ref. 9. In Fig. 1�a�, we present the FSS plots of Gij

m

and Gij

 at the largest distance in a given system, where rij,x

=rij,y =rij,z=L /2 ��=−0.05, L�64�. These plots are based on
the following FSS forms at the DFP:9 Gij

m�T ,L ,rij�
�L−��+1�fm�L1/��T−Tc� ,rij /L� and Gij


�T ,L ,rij�
�L−2��+1�f
�L1/��T−Tc� ,rij /L� with �=0.0380�4� and �
=0.68155�27� being the critical exponents of the 3D XY
model.18 Using the exponent of the DFP, we can also pro-
duce reasonable FSS plots for the correlation ratios gm and
g
,19 defined by ratios of the corresponding correlation func-
tions at two different distances rij,x=rij,y =rij,z=L /2,L /4 �see
Fig. 1�b��.

However, since the scaling argument shows that the DFP
is unstable, we conclude that these FSS plots simply describe
the “pseudoscaling” behavior, i.e., as long as ��� is finite,
significant deviations should eventually appear in large
enough lattices. In other words, we cannot conclude that the
transition is of second order because weak first-order transi-
tions can become practically indistinguishable from continu-
ous transitions in the usual FSS analysis for small L. Indeed,
for relatively large ���, we find obvious deviations from the
DFP. As shown in Figs. 2�a� and 2�b�, the energy distribu-
tions near the transition show a bimodal structure with in-
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FIG. 1. �Color online� Pseudoscaling behavior observed for �
=−0.05 ����Ly� �0.45 for L=64� of �a� correlation functions at a
distance rij,x=rij,y =rij,z=L /2 and �b� correlation ratios. Here, � and
� are critical exponents of the 3D XY model. Tc /J�2.2021 is ob-
tained from the crossings of dimensionless scaling parameters.
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creasing depth for larger system sizes. This is clear evidence
for a first-order transition. The peak-to-peak distance gives
an estimate of the latent heat �E���. As expected, the first-
order nature becomes weaker for smaller ��� �see Fig. 2�c��.

B. Monte Carlo renormalization-group analysis

Given our results for small and large values of ���, it is
natural to ask if there is a multicritical point where the first-
order transition line terminates. The dependence of �E��� on
small values of ��� does not provide an efficient way of an-
swering this question because larger lattices are required to
detect smaller values of �E. In what follows, we explain our
method to investigate the correct asymptotic behavior for
very small ���. Our approach is a sort of MC
renormalization-group analysis.7,8 A similar technique was
applied, for instance, to the random-bond Ising model by
Hukushima and it was found that the method is very useful
to obtain qualitative structure of the phase diagram.7

We consider several dimensionless scaling parameters
R��� �such as gm and g
 defined above� and introduce their
L-dependent estimators R�� ,L� as the crossings of
temperature-dependent curves of the parameters for two suc-
cessive system sizes L and 2L. Because the L→� limit,
R���, is expected to be scale invariant and universal for a
second-order transition, R�� ,L� must converge to such a uni-
versal value if the transition is continuous. Consequently, if a
multicritical point exists, the “flow” structure of R�� ,L�
should have a separatrix and a stable fixed point. Here, the
term flow refers to the evolution of R�� ,L� with increasing
L.

In addition to gm and g
, we use as R�� ,L� the Binder
parameters defined by Um= 
�m�4� / 
�m�2�2 and U


= 

4� / 

2�2, and the second-moment correlation lengths20

divided by the system size �m /L and �
 /L. Hence, the entire
parameter space is six-dimensional in our treatment. The ob-
tained flow diagrams are shown in Fig. 3. As can be seen in
Figs. 3�b�–3�d�, we find that in the four-dimensional sub-
space �gm ,�m /L ,g
 ,�
 /L� trajectories of the projected flows
collapse on an approximately single, monotonous curve.
Therefore, it turns out to be sufficient to treat the projected
flow in the subspace spanned by one of the above four �we
choose �m /L� and the other two parameters not included
here, namely Um and U
.

The flow projected onto this �Um ,�m /L ,U
� subspace is
shown in Fig. 3�a�. The DFP is associated with the flows for
�=−0.005 or −0.05, because, as is implied by the data col-
lapse in the FSS plots shown in Fig. 1, with such small ���
the effect of the biquadratic perturbation is still negligible in
the length scale under consideration. The known estimates
for the 3D XY universality class are Um=1.2430�5� and
�
 /L=0.5925�2�.18 We show the point corresponding to
these values on the �Um ,�m /L� plane in Fig. 3�a�. �Estimates
for the other less common parameters are not available in the
literature as far as we know.� The above observation is in
good agreement with these estimates.

For larger values of ��� with ���Ly� �1, the flow clearly
deviates from the trajectory dominated by the DFP. This is a
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FIG. 2. �Color online� Bimodal energy distribution at T�Tc for
�a� �=−10 ����Ly� �43 for L=16� and �b� �=−2 ����Ly� �18 for
L=64�. Most error bars are smaller than the symbol sizes. �c� Peak-
to-peak distance of the distribution corresponding to the latent heat
for the largest L for each �. �d� System-size dependence of the
peak-to-peak distance.
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The same flow diagrams projected on the other subspaces. The ar-
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clear sign of the expected crossover. The crossover is already
evident for �=−0.4 ����Ly� �3.1 for L=48�. As ��� increases,
the flow keeps evolving away from the DFP without a stable
fixed point or a separatrix. Note that we have already shown
clear evidence of a first-order transition for �=−2 �Fig. 2�b��.
This indicates that the observed crossover eventually leads to
the first-order transition.

While the numerical evidence in finite systems is always
insufficient for very small ���, we take the numerical result
presented above as a strong evidence for the first-order char-
acter of arbitrary small ���. This conclusion is also supported
by the epsilon expansion analysis of HLGW around the
DFP:16 the result obtained by expanding the Hamiltonian to
O��� is most naturally explained as the lack of a separatrix
fixed point, suggesting a fluctuation-induced first-order tran-
sition.

IV. SUMMARY

To summarize, we have established the crossover behav-
ior from the 3D XY DFP for an effective model that is rel-
evant for several frustrated magnets near their thermody-
namic phase transitions. Such crossover results in a weakly
first-order phase transition. Our calculation also shows that it
will be very difficult to observe such a first-order transition
with standard experimental methods as long as the frustrated
interlayer coupling is small in comparison with the intralayer
exchange. This is indeed the case of BaCuSi2O6 �Ref. 21� as
discussed in Ref. 9. In other words, although the correct
asymptotic behavior is the first-order transition, the thermo-
dynamic behavior will be dominated by the 3D XY DFP in a
broad region near the transition. The true discontinuous na-
ture of the transition can be observed in a very narrow region
near the transition point that could easily be beyond the ex-

perimental precision in most cases. Nevertheless, the first-
order transition should be observable for frustrated magnets
with ��� of order one. In such cases, the 3D XY-like behavior
beyond a certain distance from the transition point will be
finally interrupted by the fluctuation-induced first-order tran-
sition.

A value of ��� of order 1 is indeed realized in the frus-
trated spin model that has been proposed for describing the
iron based superconductors LaFeAs�O1−xFx�.22,23 According
to our result, such a model should exhibit a single weakly
first-order transition to the broken O�2��Z2 phase in pres-
ence of a strong magnetic field �the field is required to induce
effective O�2� magnetic moments�. The stacked triangular
antiferromagnetic compounds24 are other physical realiza-
tions of the effective model considered here �Eq. �2��. Simi-
larly, we predict a single weakly first-order phase transition
to take place in these systems in presence of a strong
magnetic field, which is in agreement with recent
investigations.8,25
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